skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lehner, Flavio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change threatens the resource adequacy of future power systems. Existing research and practice lack frameworks for identifying decarbonization pathways that are robust to climate‐related uncertainty. We create such an analytical framework, then use it to assess the robustness of alternative pathways to achieving 60% emissions reductions from 2022 levels by 2040 for the Western U.S. power system. Our framework integrates power system planning and resource adequacy models with 100 climate realizations from a large climate ensemble. Climate realizations drive electricity demand; thermal plant availability; and wind, solar, and hydropower generation. Among five initial decarbonization pathways, all exhibit modest to significant resource adequacy failures under climate realizations in 2040, but certain pathways experience significantly less resource adequacy failures at little additional cost relative to other pathways. By identifying and planning for an extreme climate realization that drives the largest resource adequacy failures across our pathways, we produce a new decarbonization pathway that has no resource adequacy failures under any climate realizations. This new pathway is roughly 5% more expensive than other pathways due to greater capacity investment, and shifts investment from wind to solar and natural gas generators. Our analysis suggests modest increases in investment costs can add significant robustness against climate change in decarbonizing power systems. Our framework can help power system planners adapt to climate change by stress testing future plans to potential climate realizations, and offers a unique bridge between energy system and climate modeling. 
    more » « less
  2. Arid and semi-arid regions of the world are particularly vulnerable to greenhouse gas–driven hydroclimate change. Climate models are our primary tool for projecting the future hydroclimate that society in these regions must adapt to, but here, we present a concerning discrepancy between observed and model-based historical hydroclimate trends. Over the arid/semi-arid regions of the world, the predominant signal in all model simulations is an increase in atmospheric water vapor, on average, over the last four decades, in association with the increased water vapor–holding capacity of a warmer atmosphere. In observations, this increase in atmospheric water vapor has not happened, suggesting that the availability of moisture to satisfy the increased atmospheric demand is lower in reality than in models in arid/semi-arid regions. This discrepancy is most clear in locations that are arid/semi-arid year round, but it is also apparent in more humid regions during the most arid months of the year. It indicates a major gap in our understanding and modeling capabilities which could have severe implications for hydroclimate projections, including fire hazard, moving forward. 
    more » « less
  3. Abstract Power system resource adequacy (RA), or its ability to continually balance energy supply and demand, underpins human and economic health. How meteorology affects RA and RA failures, particularly with increasing penetrations of renewables, is poorly understood. We characterize large-scale circulation patterns that drive RA failures in the Western U.S. at increasing wind and solar penetrations by integrating power system and synoptic meteorology methods. At up to 60% renewable penetration and across analyzed weather years, three high pressure patterns drive nearly all RA failures. The highest pressure anomaly is the dominant driver, accounting for 20-100% of risk hours and 43-100% of cumulative risk at 60% renewable penetration. The three high pressure patterns exhibit positive surface temperature anomalies, mixed surface solar radiation anomalies, and negative wind speed anomalies across our region, which collectively increase demand and decrease supply. Our characterized meteorological drivers align with meteorology during the California 2020 rolling blackouts, indicating continued vulnerability of power systems to these impactful weather patterns as renewables grow. 
    more » « less
  4. Free, publicly-accessible full text available November 1, 2025
  5. Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change. 
    more » « less
  6. Variability in hydroclimate impacts natural and human systems worldwide. In particular, both decadal variability and extreme precipitation events have substantial effects and are anticipated to be strongly influenced by climate change. From a practical perspective, these impacts will be felt relative to the continuously evolving background climate. Removing the underlying forced trend is therefore necessary to assess the relative impacts, but to date, the small size of most climate model ensembles has made it difficult to do this. Here we use an archive of large ensembles run under a high-emissions scenario to determine how decadal “megadrought” and “megapluvial” events—and shorter-term precipitation extremes—will vary relative to that changing baseline. When the trend is retained, mean state changes dominate: In fact, soil moisture changes are so large in some regions that conditions that would be considered a megadrought or pluvial event today are projected to become average. Time-of-emergence calculations suggest that in some regions including Europe and western North America, this shift may have already taken place and could be imminent elsewhere: Emergence of drought/pluvial conditions occurs over 61% of the global land surface (excluding Antarctica) by 2080. Relative to the changing baseline, megadrought/megapluvial risk either will not change or is slightly reduced. However, the increased frequency and intensity of both extreme wet and dry precipitation events will likely present adaptation challenges beyond anything currently experienced. In many regions, resilience against future hazards will require adapting to an ever-changing “normal,” characterized by unprecedented aridification/wetting punctuated by more severe extremes. 
    more » « less
  7. Abstract Combining new constraints on future socio‐economic trajectories and the climate system's response to emissions can substantially reduce the projection uncertainty currently clouding regional climate adaptation decisions—more than either constraint individually. 
    more » « less
  8. Abstract Plant phenology regulates the carbon cycle and land‐atmosphere coupling. Currently, climate models often disagree with observations on the seasonal cycle of vegetation growth, partially due to how spring onset is measured and simulated. Here we use both thermal and leaf area index (LAI) based indicators to characterize spring onset in CMIP6 models. Although the historical timing varies considerably across models, most agree that spring has advanced in recent decades and will continue to arrive earlier with future warming. Across the Northern Hemisphere for the periods 1950–2014, 1981–2014, and 2015–2099 in the historical and SSP5‐8.5 simulations, thermal‐based indicators estimate spring advances of −0.7 ± 0.2, −1.4 ± 0.4, and −2.4 ± 0.7 days/decade, while LAI‐based indicators estimate −0.4 ± 0.3, −0.1 ± 0.3, and −1±1.1 days/decade. Thereby, LAI‐based indicators exhibit weaker trends toward earlier onset, leading to uncertainties from different indices being as large or larger than model uncertainty. Reconciling these discrepancies is critical for understanding future changes in spring onset. 
    more » « less